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QUANTITY

Geometrz

distance between electrodes
inter-pole distance

length

Thermodynamics

Total pressure
Pressure

Total temperature
Temperature
velocity

Total enthalpy
Enthalpy

Entropy

Electrical

current

current density
resistance

conductivity

electric potential
electric field intensity
magnetic flux density

magnetomotive force

TABLE OF SYMBOLS USED

SYMBOL

£

. B R ] " oo £ =3 43 v 9

Mo Mmoo < Q

UNIT IN MKSA

metre
metre

metre

Pascal or Newton/m2

© Kelvin

metre/sec

kcal/mole kg

kcal/®K-mole kg

ampere

ampere/square metre

ohm

mho/metre

volt

volt/metre

weber/square metre or Tesla

ampere~-turn/metre

We use subscript O for time-average quantities and subscript 1 for time-varying

quantities. Subscript 1 is

for "inlet",
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ABSTRACT

Previous analyses of configurations for generating a.c. power with MHD
conduction machines that require no external reactive power supplies have been
based on an incompressible fluid model. In generators using ionized gases with
high power density, compressibility will cause apprecidble effects. A study
is made of the influence of compressibility on conduction-type MHD a.c. gen-

erators.

General MHD equations for an a.c. compressible fluid model are stated
in the quasi one-dimensional analysis. Equations for perturbations which occur
in an a.c. compressible fluid model are developed with the aid of a quasi one-
dimensional small amplitude analysis and a numerical calculation of the per-

turbation velocity is performed.

The results are presented in the form of relative perturbations of
velocity for various values of the appropriate parameters. The validity of

the small amplitude analysis is evaluated.

It has been found that the stability of a compressible flow increases
when the Mach number at the inlet, the loading factor, and the frequency are

increased. The active power density is reduced up to 20 per cent in the range




-

of conditions appropriated for power generations at 60 cps and a loading
factor equal to 0,50, Then, with stability assured, the problem of understand-
ing the a.c. energy conversion properties can be treated in the case of a

steady-state incompressible fluid model.

-8 -




SECTION I

INTRODUCTION

I.1 Brief History

Large scale commercial and space power generation systems must, in
general, produce a.c. power in order to eliminate excessive transmission losses
and to permit efficient transformation to various output voltage levels. Of
all the MHD energy conversion devices currently proposed, the d.c. Faraday
type generator has been advanced to a position of technological pre-eminence
without consideration of the expensive and inefficient inversion equipment
necessary to produce the required a.c. power}. Thus, application of d.c. gen-
erators to efficient and inexpensive conversion systems is questionable, except

in special cases where d.c. power is required.

It is therefore natural to turn our attention to magnetohydrodynamic
methods for direct generation of a.c. power,

Many a.c. MHD devices have already been proposed2=3-%-5, As in the
conventional machine analysis, the problem has been treated as a steady-state
problem, with incompressible fluid. However, in any magnetohydrodynamic gen-
erator which uses an ionized gas, the effect of compressibility must be in-

cluded, if there is a large pressure drop through the generator,

The study of the influence of compressibility in direct-current MHD
machines has been undertaken by many authors; for example, G. Sutton, who used
the assumptions of quasi-one-dimensional flow and small magnetic Reynolds
number. However, no study of compressible flow in a.c., MHD generators has been

reported, and the detailed effects of compressibility are largely unknown.

1.2 The Object and Scope of This Thesis

The object of this thesis is to present an approach to the evaluation
of the perturbations which occur in an a.c. compressible fluid model, i,e.,

the stability of the system. In Section II, general MHD equations for an a.c.




>

compressible fluid model are stated in the approximation of the quasi-one-

dimensional analysis.

Section III is the development of the MHD equations stated in the ap-
proximation of the quasi-one-dimensional analysis. These equations, as well

as the unknowns, may be split into time-average parts and time-varying parts.

The time-average parts play the same role as do the d.c. parts in the
d.c. compressible fluid model. Assuming a constant average velocity and loading
factor, we will design the shape of the channel of a d.c. self-excited MHD
generator, from these equations. We will operate this self-excited generator
with an alternating current source with the current amplitude adjusted so that
the time-average quantities (pressure, velocity, etc....) are the same as for

the d.c. generator above,

We will consider time-varying terms in equations of motion as perturba-
tions on the time-average quantities. In Section IV we will evaluate the per-
turbation quantities; the time-varying equations will be linearised by neglect-
ing all products of the small perturbation amplitudes. The validity of this

approximation will be evaluated in Section V,

In Section VI, we will evaluate the effects of perturbations on the

output electrical power,

- 10 -



SECTION II

MHD EQUATIONS IN A QUASI ONE-DIMENSIONAL ANALYSIS

I1I1I.1 The Equations of Conservation

The MHD equations in a three-dimensional analysis are well known. In
this work, we will use MHD equations in a one-dimensional analysis taking into
account the variation of the channel cross-section. There is only one space
variable. The equations of conservation are first stated by writing the con-
servation of the properties of the fluid in an elementary volume element, A dx.

The details of the calculation are presented in Appendix,

For total derivative, we will use the notation: D/dt, The inlet quanti-

ties are designated by the subscript .

The conservation of mass gives:

d(pud) _ 9 1
e (1)
or
Dp _ D du (2)
3 = - elg e+ 5)

where A is the area of the channel, u the velocity and p the density,

The conservation of momentum gives:

Du _ aP
OF-—BJ-ax (3)

where B is the magnetic flux density, J the current density, P the mechanical

pressure.

The conservation of energy gives:

2

D u 3P _ :
p-d?(h+-§-)--a'?--EJ (4)




This expression will be written in terms of entropy from equations (3) and (W)

2
Y DT RTDP _1J° _,DS
RGDFT-F ae " po0 ~Tae (8)

where T is the temperature, ¢ the conductivity, R the specific gas constant,

y the ratio of specific heats.,

I1,2 The General MHD Equation

The three complementary equations we need are "local equations" for

which the variation of the channel area is not taken into account, These are:

Ohm's law:

J = o (uB-E) (6)

the approximate expression of the conductivity:

T € P1 1/2
o =0, (f) () (7)

if we neglect electron-ion collision, and where:

E, T
€ = % + = (1 - =) Ln’l(Tl) (8)
1

2KT
1

Ei being the ionization energy, and K Boltzmann's constant.

The gas law: If the degree of ionization is assumed small, one may

reasonably assume that the gas is perfect and follows the equation:

P=pRT (9)

- 12 -




SECTION 111

TIME AVERAGE EQUATIONS - DESIGN OF A COMPRESSIBLE
FLUID CHANNEL WITH CONSTANT VELOCITY AND
CONSTANT LOADING FACTOR

The MHD equations, determined in Section II, will be split into time-
average parts (subscript o) and time-varying parts (subscript 1), as will the
unknowns. For instance, u — uo(x) + ul(x,t). The time-average parts play the
same role as does the d.c. part in a d.c. compressible fluid model, Then we
can design the shape of the channel of a d.c. self-excited MHD generator, with
constant velocity and constant loading factor, and consider that the time-
varying part of the MHD equations represents the perturbations on the time-

average quantities.

III.1 Shape of the Channel of a d.c. Self-Excited Generator

The problem of defining the dimensions of the channel is illustrated

in Figure 1, The basic assumptions are the following:

1) To simplify the problem, one neglects the effects of friction and

heat transfer,

2) One assumes that the magnetic Reynolds number based on length is

small compared to unity.

3) The magnetic circuits are closed by highly permeable, non-conducting

magnetic material.
To solve the problem, we must determine the nine unknowns:

geometrical: w, d

electrical: Jo’ Bo’ Eo’ o

thermodynamical: Po, Py To

- 13 -



We already know six equations from Section I:

conservation of mass: po(wd) = pm(wd)1 (10)
dPo
conservation of momentum: -== = - B J (11)
dTo
conservation of energy: pouocp = - - EOJo _ (12)
Ohm's law: J =v(uB_ ~E) (13)
o o oo
To € PQ1 1/2
conductivity: 0y = 9o, (T—) (P_) (14)
o1 o
equation of state: P, = PR T, (15)
and we get three equations, relative to the assumptions above:
flux density: Bd = (B,d) (16)
constant loading factor k: Eo = k uOB° (17)
constant voltage: Eow = (Eow)1 (18)

- 14 -
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Assuming a small magnetic Reynolds number compared to unity, we neglect the

magnetic field generated by current flow in the gas. The results take the form:

1 3 1 5 Py 2 2
P p 1-a l-a T o m“ " a ~ T-a " 1-a
o _ [+] - A - (o] - [«] - d _ (W
=== - () =7 = (= = (1) = (37) (19)
o1 o1 1 o1 m 1 1
o1
with
a =k y-i (20)
Y
m being the Mach number.
The ratio PO/PO\ takes the form:
1
Fo | A 2 ifA#0 (21)
7 ° (l +-E x) eee 1 _ .
o1
Po - %
— = e se ifk=0 (22)
o1
where
I -1 23
A= >+ (e-1) k - (23)
Po
L= L (21)

2
(1-k) (coB° )1 u

L is generally called "interaction length" 8, Figures 2 and 3 give the varia-

tions of Po/Pox and of A for different values of k and .

- 15 =



SECTION IVa
PERTURBATION EQUATIONS - SMALL AMPLITUDE ANALYSIS

We operate the self-excited d.c. generator with an a.c. current source
of frequency w, for which the current amplitude is adjusted so that the root-
mean-square quantities (pressure, velocity...) are the same as for the d.c.

self-excited generator in Section III above.

The magnetic Reynolds number is small compared to 1 so that the induced

magnetic field may be neglected.

In these assumptions, the electrical quantities may be split as:

B(x,t) = Re (B_(x) /2 exp (Fwt)) (25)
E(x,t) = Re (E_(x) /2 exp (jut) + E (x,t)) (26)
J(x,t) = Re (J_(x) /2 exp (Fwt)) (27)
o(x,t) = oo(x) + cl(x,t) (28)

The MHD equations in a quasi-one-dimensional analysis may be split into time-
average equations (Section III) and time-varying equations which play the role

of perturbation equations on the time-average equationms.

We have six unknowns: Pl s Uy s Py Tl ’ El s 01 for six linearised

perturbation equations which are:

tion of : 2o s 2 (ul) = 0 (29)
conservation of mass: e 5 +u e 5 =
Do 3Pl
conservation of momentum: o Tt (ul) = -(BOJO) exp (2juwt) - (30)

~ 16 -
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(Jo) Do apo
conservation of energy: ) exp (2jwt) = - (E? (Pl) + U, 5%
D aT D (o} D o, D
o o o 1l o l o
Sl @Mt T FE ) T e ®E TS o O
- 3 )
where DO/dt is the unperturbed operator (3? + u°<3;).
- 3 U S P
linearised conductivity gas law: 5 CT¢ET 3% (32)
o o o
o, uy
linearised Ohm's law: - — u B v/2(1-k) exp (jwt) = == u B /2 exp (juwt) - E; (33)
o, 0o u,6 ©°o 1
P P T
linearised gas law: 51-' =1 T]; (34)
o "o o

These equations show that the electrical perturbations oscillate at an odd

frequency and the thermodynamical perturbations at an even frequency.

An easy way to solve the perturbation equations is to introduce norm-
alized variables, and to eliminate time dependence, by assuming an appropriate

frequency for the variables as suggested by the remark above.

P (%, t) = Re(P,(x) exp (2jut)) (35)
p,(x, t) = Re(p,(x) exp (2jut)) (36)
let us assume: Tl(x, t) = Re(Tl(x) exp (2jut)) (37)
u (x, t) = Refu, (x) exp (2jut)) (38)
ol(x, t) = Re(ol(x) exp (2jwt)) (39)

- 17 -



and introduce: P =P, /P

o |
"

p1/Pg
T = T,/T
u = ul/uo
G = o,/c
then: P, = Re ($'P° exp (2jwt)) (40)
p, = Re (3'00 exp (2jwt)) (41)
T, = Re (T T_ exp (2jut)) (42)
u, = Re E'uo exp (2jwt)) (43)
0, = Re (o g, exp (2jwt)) (u4y4)

Finally we obtain the following equations:

a, Ohm's law: (45)
u uoBo/§ exp (jut) - E; = -0 uoBo/5(l-k) exp (juwt)

b. conductivity:

E=€T.—

~o| ol

¢, conservation of mass:

- 18 -




. - dp du _
(25wp + u, dx) + U T S 0

d. conservation of momentum:

dP

.= du = _
doo°(2jwu + u, dx) + Po -+ (l—P)(BoJo) =0

e. conservation of energy:
iw (=T -F 4,
P (25w G T-P) +u, g5«

f. gas law:

dx

- = - 7 =
?%T T -P)) + B J u (15U + 5+€T-1)=0

In a first approximation, we assume that the relative perturbation of

the conductivity o is negligible with respect to 1, The simplified equations

become then:
Ohm's law:
E. = u uoBo/E exp (juwt

1

mass conservation:

) (46)

. - dp _ du
2Jwe + u, g T - U, Gy (47)

momentum conservation:

. = du, _
pou°(2]wu + uo'E;) = -

energy conservation:

B (290 + u_ 9y - (257
R o dx

dp -
PO-E; + BOJO(P—l) (48)
tU g T R(FR-l) 0 (ue)

-~ 19 -



gas law:

P=0o+T (50)

where all functions with the subscript o are given by Part III and where the

five unknowns: E,, u, P, p, T have to be determined.

- 20 -



SECTION IVb

INTEGRATION OF THE VELOCITY PERTURBATION
EQUATION IN SOME PARTICULAR CASES

IVb.1 The Velocity Perturbation Equation

We have set up a system of five perturbation equations for five perturb-

ed quantities:

u p P T El
which can be solved step by step by elimination of the variables. For instance,

the elimination of p, T and E, leads to a linear system of differential equa-

1
tions of first order. Following Woodson“, these can be written, in matrix

form, as:
& 6. F} = 500 T, T} + T (51)

with the following expression for the matrix

. N
K A 2~ ~a 14K A -_
(-Ly +m‘ay) -(-L—y + a)
Y(l-mf v ,y(l-mf vy
S = (52)
) a
1 yi oA, =
_KA = -I:(K+m2)y + a
L y va 1
a - a
1-Y—2 1--‘1’—2
N\ N m /

-21 -



and

2
au dp, | _ l-a 1+ Km
{(3;)1. .} = {- 5 . 3 } (53)
(ml - 1)L (m1 -1)L
and where:
1
A X
(1 +-I:x) for A\ # 0
Po
y =5 is the function
o1
exp --% for A = 0

m1 is the Mach number at the inlet

K is a constant = (l-k)(y=-1) (54)
a is a complex constant = 2jw/u (55)
a is a constant = k(y=1)/y (56)

The solution of equation (51) takes the form:
{6, T} = ad) Q’c:{sfl (5) T} (57)

where Q(S) is the matrizant of S. Practically, the evaluation of Q(S) is
rather difficult owing to an indefinite integration, g1v1ng a series expansion

of Q(S), but it appears under this form that

{1, 1B1} < (1% 1, 1) 1} « (58)

- 22 -




This and the graphs of Figure 4 representing the variation of the modulus of
the derivatives l(d:]dx)ll and I(d?]dx)‘l show that a more severe limita-

tion occurs for the pressure perturbation than for the velocity perturbation.
In fact, the velocity perturbation may cause physical effects like shock
waves. These velocity perturbations will be determined later, instead of the

pressure perturbation.

‘From equation (51) we get the velocity perturbation equation:

2— -
du dA _AdQ AF y du ac _Cdq  CF-Q6 y = _
“dxz*(dx de*C*D)dx" ax Q& YT u=
dN _NdQ  NF-QH 59
(& Qax T D ) (59)

2 a @
with A= -n"y %y D-(l-%)
ml
14K A a g
1
(60)

_ K A = 2 -a - (K 2 _

C=(fy -arm y ) G=(gy va)

a A
_ (1¢K A = b AR AN

m being the Mach number at the inlet,

From equation (60) with five independent parameters, we can determine

the coefficients of the equation. Let us take for instance:

k, o P y» U, and f the frequency.

o1* "o

- 23 -



The knowledge of:

k gives a and K from (54) and (56).

o1
gives €, A and T01 for a given gas

o1l

u ives m2 L
Oge ?

f gives a

If we take three of five parameters, say 91 P01 and (uo) then equation
(59) will depend on two parameters: loading factor (k) and frequency (f),
and the integration will be done for different values of these two basic
parameters. But before we calculate a numerical solution of (59), we shall

study a case of special interest, namely that of an open circuit,

For k = 1 the velocity equation gives

2- — 2
2. d“u 2 — du 2 =5 = _
y(1 - ml) 2 - (2y m a) = - (v m a )us=0

for which we get the trivial solution,
u=0 (61)

Then, from (u46), (47), (48), (49), (50):
P=0=p=T-=E

Consequently, there is no perturbation in an open circuit generator,

- 24 -




Later we integrate (59) numerically for values of k # 1, and for some

particular cases where the integration becomes easy and can be done by hand.

The numerical application in each of the particular cases below will

be done for a combustion gas having the properties:

Q
n

21.9 mho/m at pressure P°l

o1

LI 1430 m/sec

P =5 x 10° Newton/m’

and where:
e = 12
= o

To‘ 3000 °K
B = 4 wb/m2

o1
m2 = 1,5

We use a supersonic velocity so that the downward perturbations cannot

go up. Therefore, at

the inlet boundary, there are no perturbations, But the

derivatives of the perturbations are not zero. Their magnitude is given by

Figure 4,

IVb,1.1 Large Frequency

For large frequency (f > 500 cps) and for x < um, the velocity equation

takes a simple form:

2= - 2 -

(l-i)l—‘i+(2€)-d£+(a)u:-(a )
2 2 dx 2

m‘ dx ym‘L

- 25 -




for which the solution is:

- 1 ™ - ™
U= -———+c exp (- =71 ax) + ¢, exp (- —
YamlL 1 1

ax) (62)

¢, and ¢, being constants.

The solution is composed of two waves oscillating at frequency:

—) and - (——

Figure 5 shows the representations of E; and_\fc for k = 1/2 and for
f = 960 cps. We deduce from expression (62) that when the frequency increases,
then the perturbations decrease, so that it becomes more interesting to operate

at large frequency than at small frequency.
IVb.1.2 Zero-Order Approximation

Equation (59) can be easily integrated when the coefficients are con-
stants, and in fact, we can always expand the coefficients of (59) close to
the origin and then determine the degree of approximation we allowed ourselves
in assuming constant coefficients (zero-order approximation). To this purpose,
we take the ratio between the first two terms in the development, close to
the origin, of each of the coefficients of equation (59). Then, we plot the
minimum value of the modulus of these ratios for different values of k and f,
The minimum value of the modulus occurs for the coefficient of u but not for
the other three coefficients. This minimum has a value of 0,92 at a frequency

of 114 cps, in the case of a short circuit. This is quite a severe limitation

to the zero-order validity.

Once the validity of the zero-order solution is known, then we can
integrate equation (59). The solution will take the form:

- 26 -



U =u +c) exp (ryx) + c, exp (r,x) (63)

where G% designates the complex particular solution, and c,c, and r,r, are

complex constants determined by (59). The numerical application has been done

for

k=0 0.5 0.8

£f=0 28.5 57 114 cps

The results are given under the form of G;, E; ve. x where E; is the real

part of u and E; is the imaginary part of u (Figures 7, 8, 9, 10).

IVb.1.3 General Case

The integration above is valid for a range of x less than 2m. For

x > 2m, the velocity equation can be integrated by a power series expansion

of the form:

where o is a complex number.

But it appears that a large number of terms are then necessary, so that
hand calculation becomes impractical., A detailed study of equation (57) would
allow a closer approach of the solution.

However, the determination of the solution of the velocity perturbation
equation is limited by the fact that we operate in a linear small-amplitude
analysis. The next step of our work is to determine the degree of validity

of the small-amplitude analysis for the values of our parameters k and f.

-27 -




SECTION V

VALIDITY OF THE SMALL-AMPLITUDE ANALYSIS
IN THE ZERO-ORDER APPROXIMATION

We have seen that the perturbation of the velocity in a.c. operation

of a self-excited generator is given by

oy E Re(Eho exp (2jut))

where u has been determined in Part IV, The small-amplitude analysis holds

for the assumption of [u] << 1,

In this chapter, from the numerical value of u obtained in Section IV,
we determine the variation of |u| along the channel, for a range of x less

than 2 metres.

At the origin we note that:

dlul, _ |,du
5 7 &

The values of |d\-f/dx|1 are tabulated on the graph 4,

Graphs 7, 8b, 9b and 10b represent the variation of |§1 along the

channel in the zero-order approximation for

k=0 0.5 0.8 1

f=0 28.5 57 114 cps

In Figure 11 we have plotted the maximum value of [EI for the range
of X less than 2 metres, which gives us the validity of linear analysis of

small perturbations.

- 28 -
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EaRiean: = soaisa il

We note that if we do not want a velocity less than the sound velocity
(ag) then:

ag U - lull

Hence,

a
a-Juh>==2
u
[«

This implies that:

- 1
ol <1 -2

But it appears that the required condition, |[u]

<1 --l;, is sufficient.
max m

Figure 11 shows the limitation of |u] __ ve. 1 - ;:—. The graph shows that,

for a Mach number at the entrance equal to 1.225, and for an industrial freq-

‘'uency of 60 cps, the loading factor must be at least equal to 0.8, For a

loading factor equal to 0.5, the operating frequency must be at least 110 cps.
Hence, it would be interesting to use large values of velocity and frequency,

so as to avoid limitations perturbations.
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SECTION VI

THE PROBLEM OF THE ELECTRICAL OUTPUT POWER

In this chapter we evaluate the influence of the compressibility on

the active and reactive power,

We already stated that:

E=Ej Y2 cos uwt + E, (64)
with
E, = Re(u;B V2 exp jwt) (65)
u, = Re((ur + juc) u, exp 2jwt] (66)
Then,
V2 - - .
E = Eo +t 5 uoBo(ur cos wt - u_ sin wt)
V2 - - .
+ = uoBo(ur cos 3wt - u_ sin 3wt )
and can be written as:
E = Re(Em exp jwt + an exp 3juwt) (67)
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with:

u
E,6=E 2(1 + 5) - 3 2k]
< -
_ U c
Eg, = Eg V205 - 3 5p)

J, in a similar manner, takes the form:

J = Re(Jo /2 exp jut)

(68)

(69)

(70)

The complex form of Poynting's theorem’, gives an expression for the active

and reactive power density. For a frequency (2w), we get:

- Re(div §)

u
b
BoJo(l + ﬁ)

and,

1

~ Im(div §) 3

]
Ly}
C
”~
I
+
€

-
where S is the Poynting vector.

1
3-Re(sw J, v2)

IME J V2) +w
w ©

(71)
B2
=2
uO

(72)
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The right-hand side of equation (71) represents the average density

of active power,

The first term on the right-hand side of equation (72) is the reactive
power density associated with the average power density of equation (71).
The second term represents the average reactive power stored within the field

in the channel,

For a range of frequency less than 100 cps and a length less than

2 metres, 3; appears to be negative and E; positive.

From (71), we deduced that the generated average density of active
power is reduced from the unperturbed case. But from (72) it appears that
the need of reactive power density is less than in the case of steady-state

with no perturbation.

Figures 12 and 13 show the maximum decrease of relative active and
reactive power density due to the gas compressibility. The change of generated
active power is of the order of 20 per cent, while the change in reactive
power requirement does not exceed 2 per cent in the range of conditions ap-

propriated for power generation at 60 cps and a loading factor equal to 0.5,

However, for large values of the frequency, G; may take positive values
(see Figure 5), This may enhance the production of the active power density,

as it can be explained by an increase in the stability of the flow,
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SECTION VII

CONCLUDING REMARKS

The results of the analysis of the perturbations which occur in a
self-excited a.c. MHD generator, in the small-amplitude approximation, are
still valid for a.c. conduction-type generators, for which an analysis has
been made in the case of steady incompressible flow with sinusoildal variation
of electrical quantities. However, the reactive power required for a self-
excited a.c, MHD generator makes it desirable to design new MHD machines for

generating a.c. power without external reactive power requirements.

Such a new concept of MHD conduction machines for a.c. power generation
has been proposed and analysed by Woodson®. It was shown that two conduction-
type generators can be cross-coupled in such a way that the reactive field
winding of one machine provides a capacitive tuning for the other machine,
The basic system proposed by Woodson consists of a channel of constant cross-
section, The velocity and conductivity of the conducting fluid are assumed
constant, The channel contains two pairs of electrodes forming two conduction
generators, The addition of two cross-coupling windings transforms the pair
of self-excited d.c. generators into a two-phase self-excited a.c. generator,
and under certain conditions of operation there are steady-state alternating
currents. In each of these two devices the magnetic field leads the electric
field by n/4 radians. But the magnitude of the modulus of the velocity per-
turbations is still the same and the analysis of the curves of Figure 11

remains valid,

It has been shown that the stability of the compressible flow increases
when the Mach number at the inlet, the loading factor, and the frequency are
increased. The Mach number at the entrance must be greater than a certain
lower limit (Figure 11) in order that the downstream velocity does not become

subsonic, For example, for a frequency of 60 cps and a loading factor equal
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to 1/2, the inlet Mach number must be greater than 1.6. The compressibility
greatly affects the output electric power density as shown on Figures 12 and
13, where we have represented the maximum per cent of decrease in active and
reactive power for a range of 2 metres length, as deduced from the equations
(71) and (72). These figures show the benefit of increasing the loading factor
and the frequency to reduce the relative decrease of electrical output power
caused by the gas compressibility. Assuming a certain degree of stability
defined by Figure 11, it would be possible to treat the problem of a.c. energy
conversion properties for conditions of incompressible flow and steady-state

operation,

More work remains to be done in evaluating the value of the velocity
perturbation along the channel in the small-amplitude approximation with the
use of numerical computation. To what extent this analysis remains true and
how to treat the case of large perturbations is still open for further theoret-

ical work.
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APPENDIX
MHD EQUATIONS OF CONSERVATION IN A QUASI ONE-DIMENSIONAL ANALYSIS

The conservation of mass is stated for an elementary volume element

(A Ax), inside which we average the variables.

dp

A(puA) + A Ax 3% = O (A.1)
d(pud) + A 30 0 at the limit (A.2)

or: ax 3t

The conservation of momentum is stated in the same way, for a volume

element:
2, ) d
A((P + pu®) A) - P AA + A 8x(5z pu) = 0 (A.3)

or, with the help of (A.2):

D aP
DFL\--BJ-ax (A.4)

The conservation of energy gives

2 2
A(ouACh + 5)) + A Ax(-gT p(U +55) + EJ) = 0 (A.5)

where U designates the internal energy of the gas, and with the help of (A.2):

2
D u P _
e h+3) ~5p=- B (A.8)
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Figure 1l.- Perspective of the self-excited MHD generator,
showing the channel dimensions.
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